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ABSTRACT: In the framework of a recently developed scheme for a hybrid particle-field simulation technique where self-
consistent field theory (SCF) and molecular dynamics (MD) are combined [J. Chem. Phys. 2009, 130, 214106], specific coarse-
grained models for phospholipids and water have been developed. We optimized the model parameters, which are necessary in
evaluating the interactions between the particles and the density fields, so that the coarse-grainedmodel can reproduce the structural
properties of the reference particle�particle simulations. The development of these specific coarse-grained models suitable for
hybrid particle-field simulations opens the way toward simulations of large-scale systems employing models with chemical
specificity, especially for biological systems.

1. INTRODUCTION

Phospholipids are an important class of biomolecules. Their
amphiphilic nature allows them, when they are dissolved in
water, to self-assemble into a lipid bilayer with lipid tails shielded
from water and polar head groups exposed to the polar environ-
ment. In living organism, lipid bilayers form cellular membranes.
Biological membranes are complex structures, and despite the
considerable amount of information accumulated, experimental
methods able to follow their dynamics with details at the atomic
level are not yet available.1�5 For these reasons, lipid bilayers
have attracted the interest of the computational biophysics com-
munity, and atomistic molecular dynamics (MD) simulations of
these systems have been performed for a long time.6�10 How-
ever, these simulations are still computationally very expensive to
study processes occurring on the mesoscopic time (>μs) and
length scales (>100 nm).11 Therefore, to overcome this problem,
alternative computational methods aiming to bridge the time and
length scales involved in the relevant phenomena are constantly
proposed. In the past few years, coarse-grained (CG) simulations
became a very popular method for studying these systems. The
CG approach involves the reduction of degrees of freedom in the
atomic model of the simulated system by combining several
atoms to a single particle (“effective bead”). CG methods have
been successfully applied to several problems involving polymers,12

biomolecules,2 and more in general soft matter.13

For phospholipids, different types of CG models have been
developed. For a detailed overview, the reader should refer to a
recent review of Muller et al.14 Sintes and Baumg€artner15,16

developed a coarse-grained model for lipid bilayers where the
solvent is implicitly taken into account. Later, Lenz and Schmid
developed this implicit-solvent model to pure lipid bilayers
composed of saturated lipids.17 On the other hand, Goetz and
Lipowsky introduced an explicit-solvent CG model for lipid

membranes where a binary Lennard-Jones fluid for the solvent
and a short chain of beads for the amphiphilic molecules are
used.18

The degree of coarse-graining of a simulated system is related
to the type of process that one wants to investigate. Minimalist
CG models (e.g., having a very low discrimination of the
chemical details of the molecule) can be successfully applied
to study self-assembly phenomena involving many molecules
when the structure and dynamics on atomistic length scales can
be considered irrelevant for the process, and systems can be
conveniently described by only a small number of key properties,
e.g., the amphiphilic nature of the molecule. Usually for mem-
brane systems, a clear separation in length, time, and energy
scales assumed by this approach is often missing, and the
chemical specificity of the models have to be taken into account.
Furthermore, these simple models can fail to reproduce more
complex phenomena involving specific interactions of mem-
brane with other molecular systems (e.g proteins, polymers).
In these cases, the generic nature of the minimal coarse-grain
models limits their application.

To possibly avoid these problems, more specific CG models
can be developed. These CG models usually employ several
different types of beads (not just hydrophobic and hydrophilic).
A successful and very widely explored example of this approach is
theMARTINI CGmodel developed byMarrink and co-workers.19

In the MARTINI force field, the phospholipids are described by
beads having different Lennard-Jones-type interaction para-
meters that can smoothly modulate their hydrophobic/hydrophi-
lic character. In addition, water molecules are treated explicitly
with a coarse-grained reduction scheme of four molecules to one.
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Despite, its simplicity, the MARTINI force field is able to
reproduce with surprisingly good accuracy the properties of
the self-assembly of lipid bilayers.8,20,21 This model has been
successfully extended to proteins.22

On the other hand, different computational approaches based
on field representations have been proposed tomodel soft matter
systems. In particular, in the framework of the self-consistent
field (SCF) theory, the model systems are not represented by
particles but by density fields, and the mutual interactions
between segments are decoupled and replaced by an interaction
between the segments and static external fields.23 In the SCF
theories, these external fields depend on the statistical average of
the spatially inhomogeneous density distributions of segments of
independent molecules which are interacting only with these
fields. Such external fields and the particle density distributions
have to be determined self-consistently. Numerous applications
to block copolymers,24�28 proteins,29 polymer composites,30 and
colloidal particles31,32 have demonstrated that the SCF theory is a
useful and powerful method.

Several models have been reported in the literature to study
mixtures of phospholipids and water using a field-based ap-
proach.Marcelja proposed the first fieldmodel. In this model, the
head groups of the lipid molecules are modeled as a boundary to
which the tails of the lipid molecules are anchored. The intra-
molecular degrees of freedom are sampled using the rotational
isomeric state (RIS) model, where the segments interact through
an anisotropic aligning potential.33 The inequivalence of tail,
head, and solvent segments allows the modeling of bilayers as
preassembled structures, and it does not allow the study of self-
assembly. Later, a fully self-consistent framework that is capable
of describing stable, tensionless, self-assembled bilayers has been
proposed. Both random-chain and the RIS-chainmodels result in
membranes with qualitatively similar segment distributions and
with similar thermodynamic properties.34 Quantitatively, how-
ever, this approach underestimates the experimentally measured
membrane thickness by about 50%.14 More recently, molecular-
level SCF theories that are able to treat phospholipids have been
proposed.35 Themain point of these SCF techniques is to split up
the calculation of multibody interactions into two procedures: i.
e., to find the ensemble averaged conformation distribution and
to find the segment potentials based on the segment distribution.
For these purposes, differential equations have to be solved
numerically using lattice approximations, and a discrete set of
coordinates onto which segments can be placed has to be
defined. Layers are defined imposing reflecting boundary condi-
tions to mimic a multilamellar system. Parameters are defined so
that the results of the MD simulations match those of the SCF
simulations.35 M€uller and Schick36 proposed an alternative
approach developing an off-lattice representation of the field
theory and obtained the single-chain partition function via a
partial enumeration37 over a large set ofmolecular conformations
of a lipid chain with the RIS statistics. As the partition function of
a single lipid in an external field cannot be obtained analytically
for a realistic molecular architecture, one has to approximate the
probability distributions of the conformations of noninteract-
ing lipid molecules by a representative sample of single lipid
conformations.

More recently, M€uller and Smith38 introduced a hybrid ap-
proach in the framework of SCF theory by combining it with a
Monte Carlo simulation of a coarse-grained model of polymer
chains to study phase separation in binary polymermixtures. This
approach has been widely and successfully applied by M€uller and

co-workers to coarse-grained models of diblock copolymer thin
films39 and polymer nanocomposites.40 One of the advantages of
this hybrid approach is the lack of any limitation in treating
complex molecular architectures and/or intramolecular interac-
tions. With these precedents, very recently, a hybrid particle-field
approach, where the molecular dynamics (MD) method is
combined with SCF description (MD-SCF), was proposed,
and an implementation suitable for the treatment of atomistic
force fields and/or specific coarse-grained models has been
reported.41,42

Particle-based CG models like MARTINI are still computa-
tionally expensive compared to SCF approaches. In the follow-
ing, we will refer to these models as particle�particle (PP)
models. On the other hand, SCF approaches ensure accessibility
to definitely larger length and time scales but at the cost of very
low chemical specificity. The idea behind the combined MD-
SCF method is to obtain a strategy, as far as will be possible,
having the main advantages and avoiding the main disadvantages
of both techniques.

In this paper, we report the development of coarse-grained
specific models for biologically relevant phospholipids that are
suitable for the hybrid MD-SCF techniques. In the following, we
will refer to these models as particle-field (PF) models.

The paper is organized as follows: In section 2, the basis of
SCF theory, which is useful for the reader to understand in regard
to the present investigation, a brief description of the computa-
tional scheme for hybrid particle-field MD-SCF simulations, and
simulation details are reported. In section 3, the description of
the models and the strategy of the parametrization are reported.
In section 4, particle-field MD-SCF simulation results of lipid
bilayers are reported in comparison with classical MD simula-
tions using theMARTINI force field, where the latter simulations
are hereafter called PP simulations.

2. COMPUTATIONAL METHOD

2.1. MD-SCF Theory and Implementation. In this section, a
brief exposition of the recently developed hybrid PF MD-SCF
simulation scheme is reported. This section is intended to quickly
guide the reader to get the basis of the methodology and to
understand the framework of the present investigation. In order
to obtain this approach in more detail, the reader should refer to
ref 41, where the complete derivation and the implementation
are described, and to ref 23 for a general review of SCF methods.
The main feature of the hybrid PF MD-SCF approach is that

the evaluation of the nonbonded force and its potential between
atoms of different molecules, i.e., the most computationally ex-
pensive part of MD simulations, is replaced by an evaluation of
the external potential that is dependent on the local density at
position r. According to the spirit of SCF theory, a many-body
problem like molecular motion in systems composed of many
molecules is reduced to a problem of deriving the partition
function of a single molecule in an external potential V(r). Then,
nonbonded force between atoms of different molecules can be
obtained from a suitable expression of the potential V(r) and its
derivatives.
In the framework of SCF theory, a molecule is regarded as

interacting with the surrounding molecules not directly but
through a mean field. On the basis of this picture, the Hamilto-
nian of a system that is composed ofMmolecules can be split into
two parts Ĥ(Γ) = Ĥ0(Γ) + Ŵ(Γ), whereΓ specifies a point in the
phase space, which is used as shorthand for a set of positions of all
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atoms in the system.Here and also in the following, the hat symbol
indicates that the associated physical quantity is a function of the
microscopic states described by the phase space Γ.
Ĥ0(Γ) is the Hamiltonian of a reference ideal system com-

posed of noninteracting chains but with all the intramolecular
interaction terms (bond, angle, and nonbonded interactions)
that are taken into account in the standard MD simulations. The
term Ŵ(Γ) is the deviation from the reference system which is
induced by the intermolecular nonbonded interactions.
Assuming the canonical (NVT) ensemble, the partition func-

tion of this system is given by

Z ¼ 1
M!

Z
dΓ expf�β½Ĥ0ðΓÞ þ ŴðΓÞ�g ð1Þ

where β = 1/(kBT).
From microscopic point of view, the density distribution of

atoms can be defined as a sum of δ functions centered at the
center of mass of each particle as

ϕ̂ðr;ΓÞ ¼ ∑
M

p¼ 1
∑
SðpÞ

i¼ 0
δðr� rðpÞi Þ ð2Þ

where M is the total number of molecules in the system, S(p) is
the number of particles contained in pth molecule, and ri

(p) is the
position of the ith particle in pth molecule. Several assumptions
are introduced to calculate the interaction term Ŵ(Γ). First of all,
we assume that Ŵ(Γ) depends on Γ only through the particle
density ϕ̂(r;Γ) as

ŴðΓÞ ¼ W ½ϕ̂ðr;ΓÞ� ð3Þ

whereW [ϕ̂(r;Γ)] means thatW is a functional of ϕ̂(r;Γ). Using
an identity f[ϕ̂(Γ)] =

R
D{j(r)} δ[j(r)� ϕ̂(Γ)] f [j(r)] where

δ[j(r)] is the δ functional, the partition function in eq 1 can be
rewritten as

Z ¼ 1
M!

Z
DfjðrÞg

Z
DfwðrÞg exp �β �M

β
ln z

��

þW ½jðrÞ� �
Z

VðrÞ jðrÞ dr
��

ð4Þ

In this expression, z is the single molecule partition function,
w(r) is a conjugate field of j(r) which appeared in the Fourier
representation of the δ functional, and V(r) is the external
potential that is related to w(r) as V(r) = (i/β)w(r).
For evaluating this partition function approximately, the

integrals over j(r) and w(r) in eq 4 are replaced with a Gaussian
integral around the most probable state that minimizes the
argument of the exponential function on the right side of eq 4
(so-called saddle point approximation).
The minimization conditions in the form of functional deri-

vatives result in

VðrÞ ¼ δW ½ϕðrÞ�
δϕðrÞ

jðrÞ ¼ � M
βz

δz
δVðrÞ ¼ Æϕ̂ ðr;ΓÞæ ¼ ϕðrÞ

8>>><
>>>: ð5Þ

where ϕ(r) is the coarse-grained density at position r.
In terms of eq 5, it is possible to acquire an expression for a

density-dependent external potential acting on each segment.

Next, we assume that the density dependent interaction
potential W, where each component species is specified by the
index K, takes the following form:

W ½fϕKðrÞg� ¼
Z

dr
kBT
2 ∑

KK 0
χKK 0ϕKðrÞϕK0 ðrÞ þ 1

2k
ð∑
K
ϕKðrÞ � ϕ0Þ2

 !

ð6Þ
where ϕK(r) is the coarse-grained density of the species K at
position r and χKK0 represents the mean field parameters for the
interaction of a particle of type K with the density fields due to
particles of type K0. The second term of the integrand on the
right-hand side of eq 6 is the relaxed incompressibility condition.
k is the compressibility that is assumed to be sufficiently small,
and ϕ0 is the total number density of segments (we assume that
volume for all segments is the same). Then, the corresponding
mean field potential is given by

VKðrÞ ¼ δW ½fϕKðrÞg�
δϕKðrÞ

¼ kBT∑
K0
χKK 0ϕK0 ðrÞ þ 1

k
ð∑
K
ϕKðrÞ � ϕ0Þ

ð7Þ
Taking the case of a mixture of two components A and B as an

example, the mean field potential acting on a particle of type A at
position r is given by

VAðrÞ ¼ kBT½χAAϕAðrÞ þ χABϕBðrÞ� þ
1
k
½ϕAðrÞ

þ ϕBðrÞ � ϕ0� ð8Þ
Thus, the force acting on the particle A at position r imposed

by the interaction with the density field is

FAðrÞ ¼ � ∂VAðrÞ
∂r

¼ � kBT χAA
∂ϕAðrÞ
∂r

þ χAB
∂ϕBðrÞ
∂r

� �

� 1
k

∂ϕAðrÞ
∂r

þ ∂ϕBðrÞ
∂r

� �
ð9Þ

The main advantage of the hybrid MD-SCF scheme is that the
most computationally expensive part of the MD simulations, i.e.,
the evaluation of the nonbonded force between atoms of dif-
ferent molecules, is replaced by the evaluation of forces between
single molecules with an external potential. In order to connect
particle and field models, for the proposed hybrid MD-SCF
scheme, it is necessary to obtain a smooth coarse-grained density
function directly from the particle positions Γ. Let us denote this
procedure as

S̅fϕ̂ðr;ΓÞg ¼ ϕðrÞ ð10Þ
where S is a symbolic name of the mapping from the particle
positions to the coarse-grained density. In order to obtain a
smooth spatial density from particle positions, the simulation box
is divided into several cells. In particular, particles are sorted and,
according to their positions, assigned to ncell = nxnynz (where nx,
ny, and nz are the number of cells in the x, y, and z directions,
respectively). Furthermore, according to the position of each
particle inside a cell, a fraction of it will be assigned to each
vertex of the cell. In Chart 1, a simple two-dimensional case is
used to explain the procedure. In the same chart, the structure
of a phospholipid and the corresponding density field are
schematized.
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As shown in Chart 1B, the fraction of a particle assigned to a
given lattice point is proportional to the area of a rectangle
showed in the chart. For example, for a particle with coordinates
x and y, a fraction (l� x)(l� y)/l2 will be assigned tomesh point
1 and a fraction of xy/l2 at mesh point 4 in Chart 1B (for
simplicity, l is the length of the cell both in x and y directions).
Thus, the density at every mesh point is the sum of all fractions
assigned from all of the cells that share a given lattice point.
According to the procedure described above, the size of the cell l
is a parameter defining the density coarse-graining. The larger the
value of l is, the higher the number of particles included in every
cell and the coarser the calculated density will be. Once the
coarse-grained density has been calculated from particle posi-
tions, the spatial derivatives of the density field can be evaluated.
Spatial derivatives can be obtained by differentiation of the
density lattice. In this way, the lattice where the derivatives are
defined is staggered with respect to the lattice where the density
is defined. As schematized in Chart 1B, the squares indicate the
lattice points where the density is defined. Correspondingly, the
density gradients are defined on the center of each edge
(staggered lattice points indicated by crosses in Chart 1B) of
the square surrounding the density lattice points.
Once both density and derivatives have been computed on

their corresponding lattices, the potential energy and forces

acting on the particles can be calculated using values obtained
by interpolation of the density and its spatial derivatives in
eqs 8 and 9.
The iteration algorithm used in the MD-SCF approach is

explained in the following. According to the initial configurations
of the system (at time t0), a starting value of the coarse-grained
density is obtained. The coarse-grained density is defined on a
lattice, and the values of the density and density gradients at the
particles positions are calculated by linear interpolation. Then,
from the density gradients, forces acting on the particles at
position r due to the interaction with the density fields are
computed according to eq 9. The total force acting on the
particles will be the sum of the intramolecular forces (bonds,
angles, and intramolecular nonbonded forces calculated as in
classical MD simulations) and the forces due to the interactions
of particles with density fields. After the force calculation, a new
configuration will be then obtained by integration of the equation
of motion. In principle, for every new configuration, an update of
the CG density calculated from the new coordinates should be
performed. Test simulations have shown that, due to the
collective nature of the density fields, it is possible to define an
update frequency of the coarse-grained densities without a loss of
accuracy.41,42 In other words, the values of the coarse-grained
density at lattice points are not updated at every time step but
only at every prefixed density update time (Δtupdate). Then,
between two updates, the values of the densities on the lattice
used to interpolate both density and its derivatives will be con-
stant. When an update of density is performed, a new coarse-
grained density will be obtained, and the iteration algorithm
converges when the coarse-grained density and the particle-field
potential become self-consistent.
2.2. Simulations Details. Classical MD simulations used to

obtain reference PP simulations have been performed using the
program GROMACS (ver. 3.3).43 The time step used for the
integration of the equations of motion was 0.03 ps. The
temperature and pressure were kept constant using Berendsen’s
weak coupling method (τT = 0.1 ps and τP = 1 ps). Target
temperatures have been chosen according to the available
experimental data and are listed in Table 1. A cutoff of 1.5 nm
has been used to truncate nonbonded interactions. To equili-
brate the system with NPT simulations, the target pressure was
fixed to 1 bar, and semi-isotropic coupling has been employed. In
order to achieve a better comparison between the results of PP
and those of NVT PF simulations, NVT MD simulations have
been performed using the average box lengths (see Table 1)
obtained from the equilibrated NPT simulations. In particular,
NPT simulations were performed for all systems for at least
120 ns. In the case of the DPPC lipid, the equilibrium area/lipid
at 323 K for the PPmodel is 0.64 nm2. This value was reported by
Marrink et al.44 and is in agreement with the experimental value

Chart 1. (A) Construction of Coarse-Grained Density for a
Phospholipid and (B) Criterion for the Assignment of Particle
Fractions to Lattice Points

Table 1. Details about Simulated Systems

box lengtha (nm) composition

lipid type x y z no. of lipids no. of water weight % lipids T (K)

DPPC 8.17605 8.17605 6.94982 208 1600 60.9 325

DMPC 6.60390 6.60390 9.46884 208 1600 56.5 303

DOPC 7.21263 7.21263 9.62862 208 1600 64.5 303

DSPC 8.02782 8.02782 7.75874 208 1600 64.5 335
aValues of box length in x, y, and z directions have been fixed using averages obtained from NPT simulations of the reference PP models.

http://pubs.acs.org/action/showImage?doi=10.1021/ct200132n&iName=master.img-000.jpg&w=111&h=225
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reported by Nagle et al.45 and later by Ku�cerka et al.46 In order to
simulate systems having a correct value of area/lipid, NVT PF
simulations have been performed using average box lengths (see
Table 1) that are corresponding to those obtained in the
reference PP simulations.
The molecular dynamics program OCCAM47 was used

for hybrid particle-field MD simulations. PF simulations
have been performed using a time step of 0.03 ps. NVT simu-
lations have been conducted keeping the temperature con-
stant using an Andersen thermostat with a collision frequency
of 5 ps�1.

All density profiles, for both PP and PF simulations, have been
calculated from simulations equilibrated at least for 10 ns.
Density profiles have been averaged over further 2 ns after
equilibration. The composition of lipid water systems has been
set in the range of stability of the bilayer phase. Details about
systems sizes and compositions used in the simulations reported
in this paper are summarized in Table 1.

3. MODELS AND THEIR PARAMETRIZATION

As described in section 2, according to the formulation of
hybrid PF models, the intramolecular bonded interactions
(bond, angles) can be modeled using usual force fields suitable
for molecular simulations. Our choice is to develop a hybrid PF
model based on a description able to retain the chemical
specificity. The coarse-graining scheme proposed by Marrink
and co-workers is suitable for this purpose. The advantages of this
model are that the parametrization of the interaction potentials is
not tailored to a specific lipid and different phospholipids can be
modeled from a small set of bead types.

In Figure 1, the MARTINI coarse-graining mapping scheme
of the atomistic structures is exemplified for the phospholipid
dipalmitoylphosphatidylcholine (DPPC).

According to the formulation of the MD-SCF method, bond
and angle interaction potentials have the same functional form
and parameters as those in the original MARTINI force field.19

All types of nonbonded intramolecular interactions are assumed
to be repulsive, while the intermolecular interactions are calcu-
lated using the assumption that each coarse-grained bead inter-
acts with the density fields.

Figure 1. The adopted coarse-graining scheme for DPPC phospholipid
is depicted. One coarse-grain bead corresponds to four atoms.

Figure 2. Water and DPPC density profiles and snapshot for (A) reference PP simulation, (B) PF simulation using a χCW parameter 2.5 times larger
than the value calculated by eq 11, (C) PF simulation using the χCW parameter calculated by eq 11.

http://pubs.acs.org/action/showImage?doi=10.1021/ct200132n&iName=master.img-001.jpg&w=133&h=167
http://pubs.acs.org/action/showImage?doi=10.1021/ct200132n&iName=master.img-002.jpg&w=503&h=295
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According to eq 7, in order to calculate the PF potential,
several mean field parameters χKK0 between a particle of type K
with the density field due to particles of type K0 are needed. A
simple choice of these parameters can be obtained by following
the Flory�Huggins approach for the calculation of χ parameters
for lattice models:

χKK0 ¼ zCN
kBT

2uKK0 � ðuKK þ uK0K0 Þ
2

� �
ð11Þ

where uKK0 is the pairwise interaction energy between a pair of
adjacent lattice sites occupied by the beads of types K and K0.
These interaction energies have been set as uKK0 =�εKK0, where
εKK0 is the Lennard-Jones ε parameter for the corresponding PP
interactions. The parameter zCN in eq 11 is the coordination
number, which takes a value of 6 for a three-dimensional lattice.
Another way to obtain the coordination number is from integra-
tion of the radial distribution function between all possible pairs.
As the initial state for the MD simulations, we prepare a
randomly mixed state of 208 DPPC and 1600 water molecules.
Then, this mixture is subjected to an energy minimization
procedure in order to avoid particle overlapping. This procedure
gives an average number of neighbors per particle calculated at a

distance equal to 1.20σ close to 6.0. With the choices described
above, it is possible, given the particle�particle ε parameters and
the value of zCN, to obtain the corresponding PF parameters.
According to our choice, the χ parameters have been obtained
considering the interactions between the different particle types
classified according to the four types polar, nonpolar, apolar, and
charged interactions considered in the MARTINI force field.19

Using the models and the PF parameters described above, we
simulated a system of DPPC and water using small values of both
grid size (l = 0.587 nm, corresponding to 1.25σ) and update
frequency (0.3 ps, corresponding to 10 time steps).

In order to determine the value of the parameter k, which
regulates the strength of the incompressibility condition imposed
in eq 10, we analyzed the behavior of density fluctuations in the
reference PP simulation. The criterion is the reproduction of the
value of the average density fluctuations, calculated as mean
square deviation between the average total density and instanta-
neous value averaged over all lattice points using the same grid
size used in PF simulations. In particular, using values of 1/k of
about 8RT (where R is the gas constant and T temperature),
average density fluctuations, in agreement with the reference PP
simulation, are found to be smaller than 1%.

Figure 3. Comparison between reference PP and PF simulations using different values of the χCW parameter for electron density profiles of water (A),
DPPC (B), and the phosphate group (C). Total density profiles for DPPC water system calculated from PP (red circles) and PF (blue triangles)
simulations in comparison with experiments (black curves; D) are shown. The density profiles evaluated using the χCW parameter, which is scaled 2 to 3
times the value obtained from eq 11, are compared with those of the reference PP simulation.

http://pubs.acs.org/action/showImage?doi=10.1021/ct200132n&iName=master.img-003.jpg&w=503&h=369
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The system has been simulated for 60 ns; further details about
simulations have been reported in section 2. In Figure 2, snap-
shots of the simulations together with calculated electron density
profiles are reported. Here, the electron density profiles are
obtained by multiplying the particle number density by the
number of electrons contained in a given bead. As shown in
Figure 2C, similarly to the reference PP simulation, the hybrid PF
simulation leads to a successful formation of a lipid bilayer.
Further comparisons between the results of PP and PF MD
simulation have been used to refine the set of initial χ parameters
obtained using eq 11.

In Figure 2, electron density profiles calculated by PP and PF
MD simulations for the DPPC/water system (bottom panel of
Figure 2) have been compared.

From a comparison of the density profiles of Figures 2A and B,
it is clear that the PF model gives a weaker phase separation
between DPPC and water molecules with respect to the MD
simulation. Furthermore, the snapshot of Figure 2C shows that,
for the system simulated with the hybrid PF method, the
phospholipid plane lies along the diagonal of the simulation
box. This indicates the tendency of the lipid molecules to occupy
a larger area for the lipid. This tendency can be connected to a
different size of the lipid molecules in the PF simulations from
that of the PP simulations. To show this, the radius of gyration
and the angle between two tails obtained from PP and PF
simulations have been compared. In particular, histograms of
these two structural quantities are very similar for both models
(see the Supporting Information). As a result, both weak phase
separation between the lipid andwater and the tendency to occupy
a larger area per lipid can bemainly ascribed to an underestimation
of repulsion between theDPPCmolecules andwater in PFmodels
with respect PP ones. Following this idea, several simulations were
conducted to refine the interaction parameter between the
hydrophobic tails of lipids and water molecules (namely the
χCW parameter). Test simulations show that starting from values
of χCW parameter 2.5 times larger than the value calculated by
eq 11, the lipid bilayer does not occupy a larger area per lipid than
the PP simulations and lies parallel to the xy plane of the
simulation box. In Figure 3, density profiles of DPPC, water,
and the phosphate group (P) obtained from simulations in which
the repulsion between water and hydrophobic tail is further
increased to 3 times that obtained with eq 11 are reported.

From Figure 3, it is clear that using a value of the χCW
parameter that is 2.5 times larger than that evaluated by eq 11
gives electron density profiles very close to that in the reference
PP simulations. In Figure 3D, the total electron density profiles of
the DPPC/water system calculated from PP and PF simulations
are compared with those obtained by fitting X-ray diffraction

experiments of Ku�cerka and co-wokers.46 The behavior of the
calculated density profiles is smoother than the experimental
one. In particular, in both PP and PF density profiles, the height
of the peaks located at about 2 nm from the center of the bilayer is
slightly underestimated. This effect, similar in PP and PF
simulations, can be ascribed more to the coarse-grained nature
of the models (reduction of degrees of freedom into one effective
bead) than to the field description in the hybrid PF models; a
similar behavior is found comparing the behavior of the calcu-
lated and experimental density profiles for the phosphate group
(Figure 3C). The optimized set of χ parameters for all PF
interactions is reported in Table 2.

According to eq 11, the interaction matrix is symmetric, and
the χ parameter between the same type of particles is zero.

4. SIMULATIONS RESULTS

In Figure 4, self-assemblies of DPPC/water systems simulated
using PP and PF models are compared. For both simulations, the
initial configuration and the simulation conditions are the same

Table 2. Particle-Field Interaction Matrixa

N P G C D W

N 0.00 �1.50 6.30 9.00 7.20 �8.10

P �1.50 0.00 4.50 13.50 11.70 �3.60

G 6.30 4.50 0.00 6.30 6.30 4.50

C 9.00 13.50 6.30 0.00 0.00 33.75

D 7.20 11.70 6.30 0.00 0.00 23.25

W �8.10 �3.60 4.50 33.75 23.25 0.00
a χKK0� RT (kJ/mol) for particles of typeK interacting with density field
due to particle of typeK0 are reported. χ parameters have been calculated
using eq 11; the value of χCW is 2.5 times the one calculated by eq 11.

Figure 4. Comparison of the self-assembly process of DPPC and water
in a bilayer phase obtained from PF (A) and PP simulations (B). In the
figure, the time behavior of particle-field intermolecular potential in the
PF MD simulation is compared with the behavior of the nonbonded
Lennard-Jones potential in the PP MD simulation. Potential units are
kilojoules per mole.
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(see Table 1). The starting configuration for both simulations is
made up of randomly mixed DPPC and water molecules.

It is worth noting that in the PF simulations the formation of
the lipid bilayer as stable equilibrium state, as shown by the
snapshots reported in Figure 4A, is observed already after about 7
ns. From Figure 4B it can be noted that in the same time interval

the PP simulation shows only an initial stage of phase separation
and a stable lipid bilayer phase is formed only after 30 ns.
4.1. Influence of Density Coarse-Graining. 4.1.1. Structural

Properties.As described in section 2, coarse-grained density fields
ϕK(r), obtained from particle positions for every particle type K,
are used to calculate PF potentials and forces using eqs 8 and 9.

Figure 5. Partial density profiles for water and DPPC obtained from (A) PP simulations and PF simulations using l = (B) 1.25σ, (C) 1.50σ, (D) 1.60σ,
(E) 2.0σ, and (F) 2.5σ. In all PF simulations, the update frequency Δtupdate is 10 time steps.

Figure 6. Partial density profiles for water and DPPC obtained from (A) PP simulations and PF simulations usingΔtupdate = (B) 10, (C) 300, (D) 700,
(E) 900, and (F) 1300 time steps. In all PF simulations, the grid size l is 1.25σ.

http://pubs.acs.org/action/showImage?doi=10.1021/ct200132n&iName=master.img-005.jpg&w=503&h=253
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According to the scheme described above, two parameters, the
cell size l and the update frequency Δtupdate, regulate the degree
of coarse-graining of the density fields. Larger cell sizes lead to
more collective density fields. As for the value of the update
frequency, it has to be chosen in a way that the approximation of
slow variation of the field with respect to the particle displace-
ment is valid between two density updates. In this section,
simulation results using different density update frequencies
and cell sizes will be discussed and compared with the results
of reference PP simulations.
Several test simulations have been performed to understand

the effect of the cell size l on the quality of calculated electron
density profiles of the DPPC water bilayer. In Figure 5, partial
density profiles corresponding to water and to the four different
bead types (N, P, G, and C) present in DPPC obtained using l
ranging from 1.25 and 2.5σ (corresponding to 0.59 and 1.17 nm)
and using the same update frequency (Δtupdate = 10 timesteps)
are reported. From Figure 5 it is clear that PF simulations
reproduce the structure of the lipid bilayer phase obtained from
reference PP simulations well (Figure 5A). Values of l larger than
2.5σ give rise to stronger phase separation between water and
DPPC with a narrowing of the density profiles. The grid size is
larger, and this effect is more pronounced.
In Figure 6, electron partial density profiles for a mixture of

water and DPPC molecules obtained for different values of the
density update and using the same grid size (l = 1.25 σ) are
compared with those obtained from reference PP simulations. In
particular, the behaviors for Δtupdate ranging from 10 (0.3 ps) to
1300 (39 ps) time steps are compared.
As expected, the agreement between PP and PF density

profiles worsens as the Δtupdate grows. For an update frequency
between 10 and 700 time steps, water and DPPC density profiles
are quite similar (see Figure 6B�D) and reproduce the behavior
of the reference PP simulation well. Starting from update
frequencies of 900 time steps (see Figure 6E), artificial undula-
tions in the lipid bilayers are obtained. This causes a smoothing of
the calculated density profiles. In particular, when large updates
are used, the central depletion in the density profile of the
hydrophobic beads of type C is absent (Figures 6E,F). Further-
more, the density profiles of the DPPC head groups N and P and
of the bead types G are very shallow (Figure 6E,F).

The reproduction of the spatial organization of the head
groups and in particular the phosphate group (type P) is
important for the quality of the model. In fact, the bilayer
thickness (DHH), obtained by calculating the distance between
the two peaks of the density profile corresponding to the
phosphate group, can be compared with the values obtained
from X-ray and/or neutron diffraction measurements. In the case
of DPPC at 323 K (50 �C), a value of DHH of 3.7 nm is obtained
from PF simulations using update frequencies from 10 to 700
time steps. This value is equal to the one obtained from PP
simulations and close to the experimental value of 3.8 nm
measured at the same temperature.48 For larger values of density
update frequency, the electron density profile of P groups
becomes broader, and a correct evaluation of DHH becomes
unreliable.
In order to understand the behavior of the systems as a

function of the frequency of the density update, it is useful to
compare the mean square displacement (MSD) of the particles
as a function of time. In Figure 7, we present the behavior of the
square root of the mean square displacement for water and the
DPPC in units of cell length ((MSD)1/2/lwhere l is the cell length)
as function of time for different values of update frequencies.
This is a direct way to understand the validity of the approx-

imation of slow variation of the field with respect to the particle
displacement between two density updates. In fact, the plot of
Figure 7 quantifies how many cells a particle can cross in a given
amount of simulation time. From Figure 7, it is clear that for
update frequencies between 500 and 700 steps (corresponding
to 15 and 21 ps) both water and DPPC beads have a displace-
ment smaller than or equal to the cell size. For larger update time
intervals, the displacement is larger than the size of a cell. This
result agrees well with the good reproduction of density profiles
and a bilayer thickness for update frequencies smaller than
700 steps.
This kind of analysis of PF simulations can be useful in general

to set a suitable value for the update frequency also in the absence
of reference simulations data.
4.1.2. Dynamical Properties. From the comparison of the self-

assembly processes of a lipid bilayer obtained in the simulations
shown in Figure 4, it is clear that the dynamics of the system
simulated by the PF method are faster. This is due to smoother
potentials and forces characterizing the PF Hamiltonian. In
particular, PF models include the effect of excluded volume

Figure 7. Normalized displacement of water, DPPC, and P beads as a
function of time.

Figure 8. Ratio between PP and PF diffusion coefficients as a function
of the update frequency calculated for water (black curve) and DPPC
(red curve).

http://pubs.acs.org/action/showImage?doi=10.1021/ct200132n&iName=master.img-007.jpg&w=240&h=184
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interactions between particles using the incompressibility con-
dition described in eq 7. Forces acting on the particles then
depend on the derivatives of the density fields that change
smoothly over the length scale at larger than average distances
between particle pairs.
In order to compare more quantitatively the different dy-

namics in PP and PF simulations, diffusion coefficients have been
calculated from the MSD behaviors of water and DPPC particles
as functions of time.
In Figure 8, values of the ratio D* between the diffusion

coefficients calculated from the PF simulations using different
update frequencies and the one calculated from the reference PP
simulation are reported. In all of the cases and for both water and
DPPC, the diffusion coefficients calculated from the results of PF
simulations are larger than those obtained from the results of the
PP simulation. The diffusion of water is 3.5 to 4 times faster for
PF simulations. The increase of the diffusion coefficient of the
DPPC lipid ranges from about 3.5 to 7 times the value obtained
from the reference PP simulation. This behavior is in agreement
with the faster formation of a stable lipid bilayer as obtained from
the comparison between PF and PP simulations reported in
Figure 4.
In Table 3, the values of diffusion coefficients and their

components calculated from PP and PF simulations using
different density update frequencies are reported.
Results of the test simulations obtained using different grid

sizes l and the same update frequency (300 timesteps) are re-
ported in Figure 9. In particular, the values of the diffusion co-
efficients of water and DPPC increase according to the increase
in the grid size. This is reasonable because a coarser density will
give rise to smoother particle-field potentials and forces.
In the case of water, there is a small decrease in the diffusion

coefficient for the largest grid sizes (2.0σ). This effect is due to
the deviation from the reference density profile obtained when a
larger grid size is used. As described in the previous paragraph,
large grid sizes give rise to stronger phase separation between
water andDPPC. The x and y components of the diffusion tensor
of the water parallel to the bilayer plane show small variation as a
function of the grid size, and they are practically constant within
the error bar. In contrast, the z component of the diffusion tensor
of water going from a grid size of 1.5 to 2.0σ is reduced by a
factor of 2.
4.2. Particle�Particle and Particle�Field Correlations.The

formulation of the hybrid MD-SCF method employed here is
based on the interactions of single molecules with external
density fields. Interactions between different molecules do not
involve the evaluation of forces between particle pairs. This
implies that, although the density profiles calculated with PF and

PP simulations are in good agreement, pair correlations between
particles can be different.
In the case of PP simulations, the equilibrium structure and

then the density profiles are the result of excluded volume inter-
actions and of the different pair forces between hydrophilic and
hydrophobic beads. In the case of PF simulations, the structure
and the density profiles obtained from simulations are the result
of the different interactions between every single hydrophilic and
hydrophobic particle and the density external fields. To illustrate
this point intuitively, we compare the radial distribution func-
tions for several bead types between PP and PF simulations. Red
curves in Figures 10 and 11 correspond to the radial distribution
functions calculated in simulations where the short-range parti-
cle�particle repulsive interactions are explicitly included in the
PF model. These simulations, named particle�particle parti-
cle�field (PPPF), will be discussed later.
In Figure 10A, radial distribution functions (g(r)) between the

beads of water and hydrophobic tail beads (type C) calculated
from PP (black curve) and PF (blue curve) simulations are shown.
For these particle pairs, themain features of g(r) for the PP and

PF simulations are very similar, except that the behavior of the PF
is a bit smoother than that of the PP simulations.
This is due to smoother interactions between water particles

and the field generated by the hydrophobic tail particles. Still
similar is the behavior of the g(r) between water andG type beads
(Figure 10B). In this case, the radial distribution functions of
the PF simulations, due to the continuous nature of the field

Table 3. Diffusion Coefficients Calculated Using Different Update Frequenciesa

water [cm2/s � 105] DPPC [cm2/s � 105]

update frequency [timesteps] total x y z total x y z

particle�particle 1.27 1.63 1.63 0.43 0.08 0.13 0.12 0.01

10 4.40 6.5 6.6 0.04 0.28 0.45 0.43 0.03

100 4.67 7.1 6.8 0.04 0.27 0.43 0.44 0.03

300 4.82 7.3 7.1 0.04 0.26 0.38 0.38 0.04

500 5.13 7.6 7.6 0.05 0.35 0.52 0.50 0.03

700 5.53 8.4 8.4 0.05 0.55 0.079 0.078 0.09
aThe grid size l is equal to 1.25σ for all simulations.

Figure 9. Behavior diffusion coefficients of water and DPPC as a
function of the CG density grid size.
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representation, are characterized by the absence of peaks and a
smoother behavior. Furthermore, at zero distance, the PF g(r)
shows a small nonzero value. Differently from PP simulations,
where the overlapping between particles is strictly avoided, in the
PF simulations, the excluded volume effects between different
particles are taken into account in the field description by
imposing the incompressibility condition in eq 7.
Different is the behavior of particle correlations in lipid and

water pure phases. In particular, in Figure 11A, g(r) betweenDPPC
beads and, in Figure 11B, g(r) between the water beads, both of
which are obtained in PP and PF simulations, are compared.
In this case, at the PF level, the absence of correlations

between particles is clear from the behavior of g(r) between
both water and DPPC pairs. The absence of direct correlation
between particle pairs, as has been found in the radial distribution
functions of Figure 11, is what is expected according to the
formulation of the PF method. Differently from PP simulations,
the Hamiltonian employed in PF simulations does not involve
terms depending on the distance between particle pairs. The only
correlation expected is between the particle and fields. In fact, this
correlation has been found in the case of water and the field due
to the C hydrophobic beads and partially in the case of water and
the field due to G-type particles. Also in this case, due to the
formulation of the PF method, although a direct correlation
between the pair is still absent, the behavior of radial distribution

functions is only a consequence of the repulsive interactions
between water particles and density fields obtained from C or G
particle types that lead to a phase separated system.
On the contrary, as shown in Figure 11, a direct correlation

between particles belonging to the same hydrophilic or hydro-
phobic phase is absent. In the case of PP simulations, short-range
correlations are dominated by excluded volume interactions due
to the repulsive part of Lennard-Jones potentials between
particle pairs. In contrast, in PF simulations, excluded volume
interactions are modeled at the density field level by applying the
incompressibility condition included in the second addend of
eq 7. In this case, the density is kept homogeneous in all systems,
and it is allowed to fluctuate according to the value of compres-
sibility k (eq 7).
In Figures 10 and 11, the behaviors of the g(r) obtained from

PPPF simulations are also reported as red points.
In the simulations named PPPF, particle�field interaction

potential has the form of eq 7 but without inclusion of the
incompressibility condition. The excluded volume intermolecu-
lar interactions are then modeled by truncated short-range
Lennard-Jones potentials. In this case, intermolecular short-range
interactions are included at the particle�particle level as purely
repulsive Lennard-Jones potentials truncated at σmin = 21/6σ,

Figure 10. Radial distribution functions for (A) water�G tail and (B)
water�C tail pairs. Figure 11. Radial distribution functions obtained from PP (black

curve), PF (blue curve), and PPPF (red curve) simulations for (A)
DPPC�DPPC and (B) water�water pairs.
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while long-range interactions are still modeled with interactions
between the particle and fields. The PPPF simulations have
been run starting from equilibrium configurations obtained fromPF
simulations. The excluded volume pair interactions have been first
gradually introduced by scaling both ε and σ from 0.001 to their full
values in a few hundred steps and then running simulations with
full values of ε and σ and with electrostatic interactions for about
2000 steps. From Figure 11, it is clear that short-range correlations
between particles of PP simulations can be fully recovered at the
PPPF level with very similar radial distribution functions.
4.3. Reverse Mapping: From PF to PP Configurations.One

of the important uses of CG models is to obtain well-relaxed
structures useful for generating configurations at a higher level of
chemical detail. An example is the generation by local relaxation
of structures of dense polymermelts at the atomistic level starting
from mesoscale models.49�51

In the present case, the coarse-graining process operated from
PP to PFmodels does not involve the reduction of the number of
simulated particles, and shown above, the information that is
average out is the direct correlation between particle pairs.
The procedure of PP simulationsf derivation of a PF model;

PF simulations f reverse-mapping and local relaxation of PP
models can be an efficient way to obtain well-relaxed configura-
tions of large systems suitable for full MD simulations. From this
point of view, it is interesting to understand how easy it can be for
the systems under investigation to reach an equilibrium structure
that is indistinguishable from the one obtained by long PP

simulations starting from PF or PPPF configurations. This
information is useful for evaluating the feasibility of a possible
reverse mapping procedure able to give systems configurations
suitable for the production runs of PP simulations.

Figure 12. Comparison between PP and reverse mapped (A) DPPC and (C) water density profiles. DPPC�DPPC (B) and water�water (D) radial
distribution functions. Results obtained from full equilibration at the PP level (black curves) are compared with ones obtained from reverse-mapped
configurations at the PF (blue cross) and PPPF (red circles) levels.

Figure 13. Structure formulas of the four phospholipids considered in
the present study. The mapping scheme adopted for the CG models is
the one depicted in Figure 1. For the DOPC phospholipid, the mapping
for beads of type D including carbon atoms involved in double bonds
is shown.
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Tests using classical PP MD simulations aimed to relax
configurations equilibrated at the PF (only in this case, the
configurations have been previously optimized for about 300
steps) and at PPPF (no optimization has been employed in this
case) levels have been conducted. These test runs show that,
starting from configurations relaxed at the PF level, about 20 000
steps (corresponding to about 0.7 ns) are needed to obtain well
relaxed structures equivalent to the fully equilibrated state of the
PP simulations. In the case of configurations coming from PPPF,
shorter simulations of about 3000 steps (corresponding to 90 ps)
are required. In Figure 12, the radial distribution functions and
density profiles obtained from reverse mapping procedures and
the ones obtained by full equilibration at the PP level are com-
pared. From the figure, it is clear that the structures obtained are
indistinguishable, and both g(r) and density profiles are practi-
cally identical.
4.4. Extension to other Phospholipids. One of the advan-

tages of our reference PP coarse-grained model is that the
parametrization of the interaction potentials is not tailored to a
specific lipid, and different phospholipids can be modeled, taking

into account different chemical structures, using a small set of
bead types.
In this section, simulations aiming to test the transferability of the

model developed forDPPC and the relative PF χKK0 parameters are
reported. Electron density profiles and bilayer thickness are com-
pared between PF and PP models and with experiments.
In particular, further test simulations are conducted for three

biologically relevant lipids, i.e. dimyristoylphosphatidylcholine
(DMPC), distearoylphosphatidylcholine (DSPC), and dioleoyl-
phosphatidylcholine (DOPC). In Figure 13, the chemical struc-
tures of these three phospholipids are shown along with the
structure of DPPC.
The advantage of our reference PP coarse-grained models

lies in the straightforward way in which the corresponding
atomistic structure can be represented. The differences between
lipids depend on the molecular structure on the atomistic level.
For instance, the main difference between DMPC, DPPC, and
DSPC is in the numbers of carbon atoms present in the
hydrophobic tails. In this case, at the CG level, the PP models
differ only in the number of beads of type C (see Figures 1 and
13) that compose the tails, while the parameters for the
nonbonded bond and angle potentials are the same. Differently,
in the case of DOPC, the presence of a double bond in each
hydrophobic chain requires an extra particle type corresponding
to four atoms including a double bond (see Figure 13, particle
type D). For this reason, in the DOPC CG model, some of the
angles and nonbonded potentials are different. In particular, the
C�C�Charmonic angle potential has a minimum at 180�, while
the C�D�C harmonic angle potential has a minimum at 120�.
In the same way, nonbonded interactions of beads of types C and
D are different.
Correspondingly, the particle�fieldmodels of DMPC, DPPC,

and DSPC have the same bonded, intramolecular nonbonded,
and the χ (see Table 2) parameters, and they differ only in the

Table 4. Deviations Sk (el/nm
3) between Particle�Particle

and Particle�Field Density Profiles for All Considered Lipids

lipid SW
a SP

a SC
a average %

DPPC 8.5 (9.4%)b 4.3 (17%)b 16.5 (19.8%)b 15%

DMPC 18.3 (11%)b 7.4 (33%)b 12.6 (17%)b 20%

DSPC 7.2 (5.6%)b 10.9 (46%)b 11.4 (11%)b 21%

DOPC 16.9 (13%)b 8.9 (38%)b 17.3 (16%)b 22%
aDeviations have been calculated using particle�field density profiles
obtained using grid size l = 1.25σ and an update frequency of 10
time steps. bDeviation calculated as a percentage Sk/Faverk � 100 of the
average density of the species, where Fkaver is the average electron density
of the species k.

Figure 14. Electron density profiles calculated for DMPC, DOPC, and DSPC lipids with PF and PP simulations. Simulations for each lipid have been
performed at the temperatures listed in Table 5.
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number of beads. In the case of DOPC, having an extra bead type
D and particle�field interactions involving only this new bead
type introduces the use of different χ parameters. Of course, the
interactions involving beads of type C are treated in the same
manner as in DMPC, DPPC, and DSPC lipids. A complete list of
parameters for the intramolecular interactions is reported in the
Supporting Information.
Other details about simulated systems are reported in Table 1.

Simulation temperatures have been chosen according to the
available experimental data; temperatures of both experiments
and simulations are listed in Table 4.
From these simulations, partial electron density profiles and

bilayer thicknesses (DHH) have been calculated and compared
with those of the reference PP simulations and available experi-
mental data.45,48,52

Partial electron density profiles compared with the corre-
sponding ones obtained from particle�particle simulations are
shown in Figure 14.

From Figure 14, it is possible to see that in all cases there is a
good agreement between the density profiles of the reference PP
and PF models. In order to evaluate quantitatively the difference
between the reference density profile and the one calculated from
particle�field simulations for a given bead type k, the following
evaluation function can be defined:

Sk ¼ 1
2lz

Z þlz

�lz

jΔFkðzÞj dz ð12Þ

where ΔFk(z) is the difference between the values of the density
calculated with the particle field and the reference particle�parti-
cle models for a given particle type k. According to the definition
given above, in Table 4, the values of SW, SP, and SC (in el/nm

3 as
units) obtained by comparing PP and PF density profiles for all
considered lipids are reported. The average deviation is smaller
for DPPC (15%), and this is not surprising because the PP
density profile of this lipid has been used for the parametrization
of PF interactions. Interestingly, also the deviations between PP
and PF density profiles for the other lipids are similar (around
20%). Furthermore, the main differences between the density
profiles of different lipids calculated in the PP simulations can be
reproduced by the PF model. For example, a comparison
between DMPC and DOPC density profiles can be done using
the deviations Sk. In Table 5, the deviation between density
profiles of DMPC and DOPC are reported for both PP and PF
simulations. It is worth noting than in this case the deviations
(on the order of 50%) are much larger than the ones calculated
between PP and PF density profiles of the same lipids. Further-
more, the values obtained for the deviations for single species is

Table 5. Deviations Sk (el/nm
3) between DMPC and DOPC

Density Profiles

model SW SP SC average %

particle�particle 29.0 (22%)a 21.6 (99%)a 39.5 (44%)a 55%

particle�fieldb 30.0 (24%)a 16.0 (73%)a 30.0 (34%)a 49%
aDeviation calculated as a percentage Sk/Faverk � 100 of the average
density of the species, where Fkaver is the average electron density of the
species k. bDeviations for particle�field density profiles have been
calculated using using grid size l = 1.25σ and an update frequency of
10 time steps.

Table 6. Calculated Bilayer Thicknessa

phospholipid DHH particle�particle (nm) DHH particle�field (nm) DHH experimental (nm)

DMPC 3.7 (30 �C) 3.7 (30 �C) 3.8b�3.5e (30 �C)
DPPC 3.5 (50 �C) 3.5 (50 �C) 3.6b (50 �C)
DOPC 4.1 (30 �C) 4.0 (30 �C) 3.7b�3.6d(30 �C)
DSPC 4.1 (60 �C) 4.4 (60 �C) 4.0b�4.1c (60 �C)

a Simulations have been performed at temperatures corresponding to the available experimental data. b From ref 48. c From ref 52. d From ref 53. e From
ref 54.

Figure 15. Total electron density profiles for DOPC (A) and DMPC (B) lipids.
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very similar for PP and PF simulations. Similar conclusions can
be made by comparing density profiles of any pair of two other
lipids considered here, except for DOPC and DSPC. In this case,
both PP and PF density profiles are very similar.
The calculated values DHH are reported in Table 6 together

with the reference PP and experimental values. The values of
DHH calculated from PF simulations are in good agreement with
both PP simulations and experimental data. We want to stress
that experimental values of DHH lie in a very narrow range going
from the smallest value of 3.6 nm for DPPC to the largest one of
4.0 nm for DSPC, and good reproduction of these values can be
proof of the transferability of the chosen PFmodel. As previously
discussed, DSPC and DOPC give very similar density profiles
with both PP and PF models. This leads to the calculation of the
same values of DHH = 4.1 nm for these two lipids using PP
models. Using PF models, according to the experimental trend, a
larger value is obtained for the DHH of DSPC (4.4 nm) and a
smaller one for DOPC (4.0 nm).
In Figure 15, the total electron density profiles obtained by

Ku�cerka et al. from X-ray scattering data for DOPC53 and
DMPC,54 the ones obtained from PP and PF simulations, are
plotted. In particular, the behavior of electron density of DOPC
and DMPC is compared. As already found for DPPC (see
Figure 3), the behavior of the calculated density profiles is
smoother than the experimental ones. Furthermore, for DOPC,
the position of the maximum of electron density profile of both
PP and PF is shifted of about 0.5 nm. This is consistent with an
overestimation of the DHH (4.1 and 4.0 nm for PP and PF,
respectively) with respect to the experimental value of 3.6�3.7 nm.
For DMPC, the position of the maximum of the electron density
profile of both PP and PF simulations is similar to the experi-
mental one. In this case, the experimental value of DHH is well
reproduced (see Table 6).

’CONCLUSIONS

Specific CG models for phospholipids and water suitable for
hybrid particle field molecular dynamics simulations have been
developed. These models and the set of parameters needed to
evaluate interactions of particles with density fields are optimized
to reproduce structural properties of reference PP simulations of
DPPC. These parameters are transferable also to other phos-
pholipids. The correct reproduction of the structural properties
of the reference system depends on the density coarse-graining
parameters. As expected, due to the smoothness of the PF
interactions, the dynamics is faster in PF simulations. In parti-
cular, the ratio between diffusion coefficients calculated from PP
and PF simulations goes from 3 to 7 depending on the degree of
coarse-graining of the density field.

The computational efficiency of the PF approach allows one to
accelerate the serial simulations by a factor of up to 10 for the
considered systems. Furthermore, the peculiar formulation of the
hybrid PF approach allows us a very efficient parallelization. To
have an idea about the efficiency for the systems considered in this
paper, 1 million steps of a simulation of a lipid bilayer system
containingmore than 1million particles (a snapshot of this system
containing a total of 1,048,576 particles is depicted in Figure 16)
takes about 5 h on 96 processors (Intel E7330, 2.40 GHz).

In conclusion, the development of specific coarse-grained
models suitable for hybrid PF simulation opens the way toward
the simulation of large-scale systems employing models with
chemical specificity.
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